If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x=156
We move all terms to the left:
x^2+8x-(156)=0
a = 1; b = 8; c = -156;
Δ = b2-4ac
Δ = 82-4·1·(-156)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{43}}{2*1}=\frac{-8-4\sqrt{43}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{43}}{2*1}=\frac{-8+4\sqrt{43}}{2} $
| 163=3x-8 | | 155=31(d-971) | | K^2-3k=-9 | | m^2+12m=-37 | | 155=31(d-971 | | 9x2+21=21 | | 2(5x+7)=−3x-12 | | 4(x-2.1)=x+0.6 | | p-3.5=9 | | 8y-64=4y | | q+420/30=28 | | 4x+3=9x-25 | | 24a-3(2a-5=51 | | 4x/3+33=59 | | 7(2x+1)=2(x+33) | | 0.015x-1.85=1.625 | | 12k2+52k-77=0 | | 18+0.5x=12+0.75x | | 8(5-n)=5n-1 | | 897=23(n+16) | | 897=23(n+16 | | 62-x=34 | | -14=-11+m/5 | | 6y+95=11y | | 6x=2x+44 | | b+152/24=14 | | 513=2m+5 | | m-4=-6-11 | | 2x=66-4x | | -56x+90+58x=92 | | 4p+36p=-81 | | 106.76=6.28r |